 News Home
 Hot Topics
Current
 Categories
 From the Magazine

17 April 2014 12:48 pm ,
Vol. 344 ,
#6181

Officials last week revealed that the U.S. contribution to ITER could cost $3.9 billion by 2034—roughly four times the...

An experimental hepatitis B drug that looked safe in animal trials tragically killed five of 15 patients in 1993. Now,...

Using the two highquality genomes that exist for Neandertals and Denisovans, researchers find clues to gene activity...

A new report from the Intergovernmental Panel on Climate Change (IPCC) concludes that humanity has done little to slow...

Astronomers have discovered an Earthsized planet in the habitable zone of a red dwarf—a star cooler than the sun—500...

Three years ago, Jennifer Francis of Rutgers University proposed that a warming Arctic was altering the behavior of the...


17 April 2014 12:48 pm ,
Vol. 344 ,
#6181
 ScienceNow
 ScienceInsider
 ScienceLive
 About Us
Progress in Prime Progressions
3 May 2004 (All day)
Two mathematicians have made a stunning breakthrough in the theory of prime numbersat least that's the preliminary assessment of experts who are looking at their complicated 50page proof.
Two years ago, Ben Green and Terence Tao began working on the problem of arithmetic progressions of primes: sequences of primes (numbers divisible only by themselves and 1) that differ by a constant amount. One such sequence is 13, 43, 73, and 103. In 1939, a Dutch mathematician proved that there are infinitely many arithmetic progressions of primes with three terms, such as 3, 5, 7 or 31, 37, 43. Green and Tao hoped to prove the same result for fourterm progressions. The theorem they got, though, proved the result for prime progressions of all lengths.
Green, who is currently at the Pacific Institute of Mathematical Sciences in Vancouver, British Columbia, and Tao, at the University of California, Los Angeles, started with a 1975 theorem by Endre Szemerédi of the Hungarian Academy of Sciences. Szemerédi proved that arithmetic progressions of all lengths crop up in any "positive fraction" of the integersbasically, any subset of integers whose ratio to the whole set doesn't dwindle away to zero as the numbers get larger and larger. Primes violate that condition. So Green and Tao set out to show that Szemerédi's theorem still holds when the integers are replaced with a smaller set of numbers with special properties and then to prove that the primes constitute a positive fraction of that set.
To build their set, they applied a branch of mathematics known as ergodic theory (loosely speaking, a theory of mixing or averaging) to mathematical objects called pseudorandom numbers. Pseudorandom numbers are not truly random, because they are generated by rules, but they behave like random numbers for certain mathematical purposes. Using these tools, Green and Tao constructed a pseudorandom set of primes and "almost primes," numbers with relatively few prime factors compared to their size.
The last step, establishing the primes as a positive fraction of their pseudorandom set, proved elusive. Then Andrew Granville, a number theorist at the University of Montreal, pointed Green to some work on the size of gaps between primes, some of which proved tailormade for Green and Tao's research.
The paper, which has been submitted to the Annals of Mathematics, is many months from acceptance. "The problem with a quick assessment of it is that it straddles two areas," Granville says. Even so, says Green's former adviser Timothy Gowers at Cambridge University, who received the 1998 Fields Medal, mathematics' equivalent of the Nobel Prize, for work on related problems, "it's a very, very spectacular achievement."
Related Sites
Green and Tao's paper
Ben Green's "Serious Work" site
More about prime arithmetic progressions
Posted In: