 News Home
 Hot Topics
Current
 Categories
 From the Magazine

17 April 2014 12:48 pm ,
Vol. 344 ,
#6181

Officials last week revealed that the U.S. contribution to ITER could cost $3.9 billion by 2034—roughly four times the...

An experimental hepatitis B drug that looked safe in animal trials tragically killed five of 15 patients in 1993. Now,...

Using the two highquality genomes that exist for Neandertals and Denisovans, researchers find clues to gene activity...

A new report from the Intergovernmental Panel on Climate Change (IPCC) concludes that humanity has done little to slow...

Astronomers have discovered an Earthsized planet in the habitable zone of a red dwarf—a star cooler than the sun—500...

Three years ago, Jennifer Francis of Rutgers University proposed that a warming Arctic was altering the behavior of the...


17 April 2014 12:48 pm ,
Vol. 344 ,
#6181
 ScienceNow
 ScienceInsider
 ScienceLive
 About Us
A New Twist on the Möbius Strip
16 July 2007 (All day)
Cut a thin strip from a piece of paper, twist it, and connect the two loose ends. You'll end up with a Möbius strip, a graceful bracelet that oddly has only one side, as you can easily demonstrate by running your finger around it. Now try the same thing with the much wider strip of paper. Why is it harder to connect the ends? Mathematicians now have a precise answer.
Although the general shape of the Möbius strip has been well understood by mathematicians and artists like M.C. Escher alike, no one had solved the mathematical equations that dictate its shape and specify where along the surface it curves and how sharply. The bending and twisting of the paper creates stresses that increase the energy stored within the strip. The equations, attempted as early as 1930, describe how the strip will arrange itself to minimize that energy. But the mathematical machinery didn't exist to solve them.
New calculations have solved the equations to produce simulated Möbius strips. And it can explain why wide bands make bad Möbius strips. The energy of twisting is greater in a thicker strip, which kinks wherever the material can't support the stress. The calculations also predict that thin bands curve more smoothly, a result the researchers call intuitive.
To solve the equations, mathematicians Eugene Starostin and G. H. M. Van der Heijden of the University College London turned to a 1989 theory that can solve certain families of differential equations, socalled EulerLagrange equations, but had never been applied to the Möbius problem. To the surprise of the authors and the mathematics community, the theory exactly predicted the shapes of differently proportioned Möbius strips, up to the critical limit where the strip flattens into an equalsided triangle.
"This computation will be a classic," says mathematician John Maddocks of the Swiss Federal Institute of Technology in Lausanne. "What kid who's interested in science hasn't made one of these?" Maddocks wonders why it took researchers so long to tackle the problem with the appropriate tool, but adds that 18 years between the invention of the applicable theory and the solution is a blink of an eye "in mathematical time."
Related links
Posted In: