 News Home
 Hot Topics
Current
 Categories
 From the Magazine

17 April 2014 12:48 pm ,
Vol. 344 ,
#6181

Officials last week revealed that the U.S. contribution to ITER could cost $3.9 billion by 2034—roughly four times the...

An experimental hepatitis B drug that looked safe in animal trials tragically killed five of 15 patients in 1993. Now,...

Using the two highquality genomes that exist for Neandertals and Denisovans, researchers find clues to gene activity...

A new report from the Intergovernmental Panel on Climate Change (IPCC) concludes that humanity has done little to slow...

Astronomers have discovered an Earthsized planet in the habitable zone of a red dwarf—a star cooler than the sun—500...

Three years ago, Jennifer Francis of Rutgers University proposed that a warming Arctic was altering the behavior of the...


17 April 2014 12:48 pm ,
Vol. 344 ,
#6181
 ScienceNow
 ScienceInsider
 ScienceLive
 About Us
Mathematicians Debate the Hole Truth
6 March 2008 (All day)
A British mathematician made headlines this week by claiming to have solved a problem that had defeated researchers for 140 years: how to make a classic formula with broad applications in physics and engineering apply to objects riddled with holes. But a team of American mathematicians say they had the key insight first, touching off a dispute about as tricky as the mathematics itself.
Darren Crowdy of Imperial College London tackled a wellknown equation called the SchwarzChristoffel formula. Worked out independently in the 1860s by German mathematicians Hermann Amandus Schwarz and Elwin Bruno Christoffel, the formula can be used to morph any polygonsuch as an octagonal stop signonto a circle in such a way that intersecting straight lines drawn on the face of the original polygon will still cross at the same angles after the transformation bends them. The whole business takes place in the "complex plane," in which real numbers run along the horizontal axis and imaginary numbers, which are real numbers multiplied by the square root of 1, run along the vertical axis.
Who cares? Plenty of engineers and physicists, as the transformation can greatly simplify analyses and calculations. For example, in analyzing the lift produced by air moving over an airplane wing, researchers can use the SchwarzChristoffel formula to transform a polygonal approximation of an airfoil into a circle, the lift on which is much easier to calculate. Moreover, the transformation lets researchers invoke powerful theorems that apply to functions in the complex plane.
Unfortunately, Crowdy says, the SchwarzChristoffel formula suffers a major limitation: It cannot handle multiple polygons or polygons with more than one polygonal hole in them. Punch a couple of triangular holes in the stop sign, for example, and instead of turning them into neat circles, the formula generally scrambles them into an unusable mess. In the 1930s, mathematicians figured out how to handle a single hole, but the more general problem stymied them.
Now Crowdy says he has solved the problem completely. The key lies in a concept called a Schottky group, which makes it possible to "add" the boundaries of circles a bit the way one might add numbers. That tack allowed him to keep the boundaries in order and extend the SchwarzChristoffel formula to holes. The finding, which Crowdy published last March in the Mathematical Proceedings of the Cambridge Philosophical Society, has been creating a buzz this week with coverage in several newspapers in the United Kingdom. "If you give me any polygon with any number of polygonal holes, I can map it to a circle with the same number of circular holes," Crowdy says.
But mathematicians John Pfaltzgraff of the University of North Carolina, Chapel Hill, and Thomas DeLillo and Alan Elcrat, both of Wichita State University in Kansas, say they had the basic strategyand a formulafirst. Crowdy heard Elcrat talk about that work in 2003, but he says the American trio didn't realize the relevance of the Schottky groups. The Americans' formula, published in 2004, involves the multiplication of an infinite number of terms, which goes haywire if the holes are too close together. Crowdy's formula replaces that product with an obscure beast known as SchottkyKlein prime function. Crowdy says his formula will never fail. "I'm very skeptical" of that claim, says Pfaltzgraff.
Who should get the glory? Other mathematicians are split. "Is the [Crowdy] approach more analytical, can you do more with it? The answer is certainly yes," says Saleh Tanveer of Ohio State University in Columbus. "You can push it in many directions." However, it remains to be seen if it will be an easier tool to use for specific applications and calculations, he adds. Michael Siegel of the New Jersey Institute of Technology in Newark says credit should be shared equally: "It's a breakthrough, and all these people contributed."
Related sites
Posted In: